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Abstract
We show that the recent application of non-extensive statistical mechanics to
fully developed turbulence (FDT) satisfies Novikov’s inequality only in the
near-Gaussian limit and exhibits compatibility with various other formulations
of FDT. We define relations between the non-extensivity parameter q and the
corresponding parameters of the lognormal, multifractal and random-β model.

PACS numbers: 0570, 4727, 0520, 0545

1. Introduction

Tsallis and co-workers [1, 2] have recently extended Boltzmann–Gibbs thermodynamics by
generalizing the concept of entropy to the non-extensive regime. This approach has turned out
to be fruitful in dealing with the statistical and multi-fractal properties of systems at critical
points with long-range interactions (see Tsallis [3] for an extensive bibliography on this).
Recently, one of us [4] developed an analysis of fully developed turbulence (FDT) based
on the assumption that the underlying statistics of the system follows Tsallis’ non-extensive
prescription. In this paper, we wish to show that the Tsallis model (TM) of [4] satisfies
Novikov’s [5] inequality only in the near-Gaussian limit, and is compatible with the multi-
fractal formulation (Meneveau and Sreenivasan [6]) and the probabilistic-cascade (the so-called
random-β) model (Benzi et al [7]) in a modified form (Shivamoggi [8]). Furthermore, the TM
is shown to be compatible with the log-normal model in the near-Gaussian limit.

2. Tsallis non-extensive model of FDT

The TM introduced in [4] uses for the radial velocity difference u between two points in the
fluid separated by a distance r the probability distribution of a canonical ensemble in Tsallis’ [2]
non-extensive statistical mechanics. This is given by

p(u) = 1

Zq

[
1 + 1

2 (q − 1)βu2
]1/(1−q)

(1a)
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where Zq is the partition function

Zq ≡
∫ ∞

−∞

[
1 + 1

2 (q − 1)βu2
]1/(1−q)

du (1b)

and q is the non-extensitivity parameter. One has 1 � q < 3 in order to ensure the existence of
the above integral. In the limit q ⇒ 1, equation (1) reduces to the familiar Boltzmann–Gibbs
expressions:

p(u) = 1

Zq

e− 1
2 βu2

(2a)

where

Zq =
∫ ∞

−∞
e− 1

2 βu2
du =

√
2π

β
. (2b)

If the structure function of order m scales in an inertial range according to〈|u|m〉 ∼ rζm L � r � �d (3)

where L is a large scale and �d is a dissipation scale, then, using (1) and simple model
assumptions, in [4] the following formula was obtained:

ζm = m

3
+ log2

[{
1 − m

(
q − 1

3 − q

)} {
1 − 3

(
q − 1

3 − q

)}−m/3
]

1 � q < 3. (4)

In the limit q ⇒ 1, equation (4) reduces to the familiar Kolmogorov [9] result,

ζm = m

3
. (5)

The most important difference between a TM of FDT and other models of FDT is that only
finitely many moments 〈|u|m〉 exist. Since for large u one has p(u) ∼ u2/(1−q), this implies
ump(u) ∼ um+2/(1−q), and existence of the mth moment thus requires

m +
2

1 − q
< −1

or

m <
3 − q

q − 1
. (6)

Since in practice q is close to l, the number m can be rather large.

3. Comparison with the log-normal model

For q ≈ 1, which corresponds to the near-Gaussian limit, equation (4) gives

ζm ≈ m

3
+

m(3 − m)

8 ln 2
(q − 1)2 q ≈ 1. (7)

The log-normal model (Monin and Yaglom [10]) gives, on the other hand, for the scaling
exponent

ζm = m

3
+

µm

18
(3 − m) (8)

where µ is the scaling exponent of the energy dissipation (denoted by ε) correlation function,

〈ε(x)ε(x + r)〉 ∼ r−m. (9)

Comparison of (7) with (8) shows that TM [4] in the near-Gaussian limit (q ≈ 1) fully
reproduces the log-normal result provided we take the following relation between µ and the
non-extensivity parameter q:

µ = 9

4 ln 2
(q − 1)2 q ≈ 1. (10)
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Figure 1. Plots of f (= − log2(1 − (m/a)) + 1
3 m log2(1 − (3/a)) − 1

3 m − 3(µ − 2)) against m

for various values of the parameter a = (3 − q)/(q − 1). Here µ = 0.25.

4. Novikov inequality

If the moments of the local mean energy dissipation scale according to〈
[ε(r)]n

〉 ∼ 〈ε〉n
(

L

r

)µn

(11)

then Novikov [5] showed that µn should increase at most linearly, i.e.

µn � n + 3(µ − 2) for n > 2. (12)

On recalling that〈|u|m〉 ∼ 〈
[ε(r)]m/3〉 rm/3 (13)

and using (3), (4) and (10), the Novikov inequality (11) requires, for the Beck [4] formulation,

− log2

[{
1 − m

(
q − 1

3 − q

)} {
1 − 3

(
q − 1

3 − q

)}−m/3
]

� m

3
+ 3(µ − 2). (14)

In the near-Gaussian limit |q − 1| � 1, equation (14) becomes

m(m − 3)

2 ln 2

(
q − 1

3 − q

)2

� m

3
+ 3(m − 2) (15)

which is satisfied, if m is adequately large. However, for finite values of (q −1), equation (14)
is not satisfied, for any m, as demonstrated in figure 1.

5. Comparison with the multi-fractal formulation

According to the multi-fractal formulation of the velocity field in FDT (Meneveau and
Sreenivasan [6]), the scaling exponent ζm of the mth-order structure function is given by

ζm = m

3
+

1

3
(3 − m)

(
3 − Dm/3

)
(16)
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where Dn is the generalized fractal dimension of the energy dissipation field.
Comparing (16) with (4), we obtain the following relation between Dn and the non-

extensivity parameter q:

Dm/3 = 3

{
1 −

(
1

3 − m

)
log2

[{
1 − m

(
q − 1

3 − q

)} {
1 − 3

(
q − 1

3 − q

)}−m/3
]}

1 � q < 3. (17)

Equation (17), of course, yields in the limit q ⇒ 1,

Dm/3 = 3 q ⇒ 1 (18)

as expected.
For q ≈ 1, corresponding to the near-Gaussian limit, equation (17) gives the simple

relation

Dm/3 ≈ 3
[
1 − m

8 ln 2
(q − 1)2

]
q ≈ 1. (19)

6. Comparison with the random-β model

In the random-β model (Benzi et al [7]), energy is transferred to only a fraction β of the
eddies downstream in the cascade and the β’s at the various levels of the cascade are allowed
to vary randomly. In the modification given in Shivamoggi [8], in conformity with the direct
numerical simulation results (Vincent and Meneguzzi [11] and others), filament-like structures
(rather than sheet-like structures, as assumed in [7]) are assumed to be created with probability
x (0 � x � 1), while space-filling eddies are created with probability (1 − x). The scaling
exponent ζm of the mth-order structure function is then given by [8],

ζm = m

3
− log2

[
x · 4m/3−1 + (1 − x)

]
0 � x � 1. (20)

Comparing (20) with (4), we obtain a relation between x and the non-extensivity parameter q,

x = 1

4m/3−1 − 1

[{
1 − m

(
q − 1

3 − q

)} {
1 − 3

(
q − 1

3 − q

)}−m/3

− 1

]
1 � q < 3. (21)

Equation (21) yields

m = 3 x = 0 (22)

as required.
On the other hand, equation (21) yields in the limit q ⇒ 1,

q ⇒ 1 x = 0 (23)

as expected.
For q ≈ 1, corresponding to the near-Gaussian limit, equation (21) yields the simple

relation

x ≈ m(3 − m)

4m/3
(q − 1)2 q ≈ 1. (24)

7. Discussion

In this paper, we have made further investigations on the non-extensive statistical mechanics
approach [4] to FDT. We have shown that this formulation is compatible with the multi-fractal
formulation of FDT. In the near-Gaussian limit, this formulation is compatible with the log-
normal model, as is to be desired. However, this formulation satisfies Novikov’s inequality
only in the near-Gaussian limit. We have established the relation between the non-extensivity
parameter q and the parameters of other models.
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